

<u>Copy</u>

"Efficiency of the Soil Stabilisation in using the NTS(Renolit)-Technology"

Technical Report

2006 year

ISOTOP Ltd, Geotechnical Department

1. Introduction

The aim of this work was – to determine the optimal types and a ratio of components of soil – cement mixes whose properties can be efficiency modified by using renolit-technology up to level that must be achieved in accordance with designed projects (taking into account economical factors). This complex includes mechanical properties and their stability, flexibility, relaxation properties for long working time and, as result, increasing the cracking resistance; water resistance; weather (climate) durability and possibility of using in-situ soil for bottom construction (landfill, compost site, ...) and waterproof construction (embankment, road shoulders, ...).

According to product specification, renolit is the polymers based mixture of latex and cellulose dispersed in water and it is specially formulated to improve of mixes of in-situ soils with cement properties. The efficiency the renolit – technology use in practice is proportional to a quality of the preliminary obtained laboratory results.

This report constitutes the results of laboratory investigation that was carried out taking to account mention above and economical advisability of in-situ materials and low cost of additional materials variation that occurs on territory of Israel.

Staff:

G.Liskevich - supervising and discussing the results;

Dr.S.Shulov - methodology, design, executing and discussing the results;

Dr.A.Roslik – executing tests;

M.Naftaliev - executing tests;

A.Katkiv – executing tests.

2.Used materials and tests

2.1 The matrix of the test samples consists of the formulations comprising:

- A. Only in-situ based materials, having practical significance and distinguishing by a ratio of fine-grained / coarse-grained fraction and plasticity (sand, lean clay, fat clay;

- B. In-situ based materials as well quarry products (crushed stone, quarry sand, quarry waste);

- C. Materials according to categories A, B plus fly ash, that is frequently used to stabilize in-situ base materials.

- D. Materials according to categories A,B,C plus Portland-cement – soil-cement (SC) materials;

- E. Material according to categorie D plus Renolit – SC-Renolit formulations.

The formulations noted as categories A, B, C, D are used as comparative basis for estimation of renolit admixture effect for improving and stabilization of SC materials properties.

2.2. The list of tests, carried out in this investigation according under ASTM and whose results, introduced in this report, comprises:

- Indicative tests (sieve analysis, Atterberg limits, water content, density,...);

- Unconfined compressive strength;
- Modulus elasticity (Young's modulus);
- CBR;
- Slake durability;
- Shrinkage;
- Permeability.

Requirements to preparation of the specimens, condition and expositions were variable, that determined especially for every group of samples.

3. Results and Conclusions

3.1. As can seen from the data in tables 1-2 the Renolit at least doesn't reduce the level of compressive strength achieved for SC-materials. For formulations on the base materials category C even at low dry density it is possible to safe compressive strength on the level 2-4MPa by variation of ratio in-situ materials / quarry materials / fly ash (Table 3, graph 1).

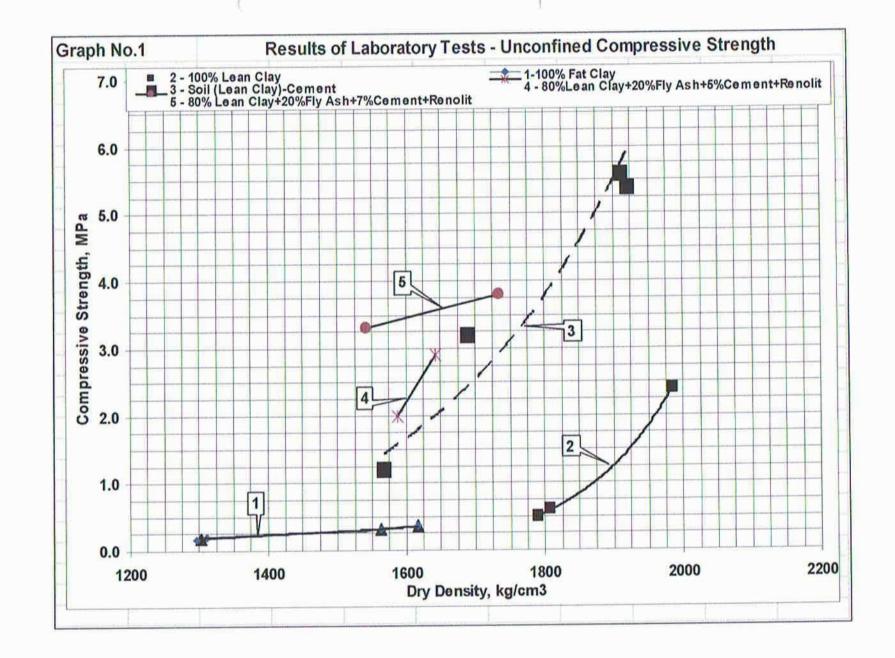
But in the same time it can be seen, that materials of category E (SC-Renolit) have more high resistivity with regard to water. It is true as well at evaporation (see picture 2, 3). Before inundation the SC and SC-Renolit materials had close values of compressive strength – approximately 5.5MPa. After 7 days inside water bath the compressive strength of SC reduced a three times, and for SC-Renolit it approached to stable value.

Table 5 and Graph 4 illustrate results of CBR test and results of the Young's modulus calculations. Cement-stabilization and as well Renolit admixture to lean clay, as base in-situ material, increase CBR more than three times and modulus elasticity 5-6 times.

Manipulating the ratio: lean clay / fly ash and cement / Renolit concentration of material category E gives us possibility to obtain materials of the durability properties as resistance to weathering and abrasive action close to properties of rock materials (Table 6).

The conclusion from our data obtained and noted in item 3.1 is as follows: It is possible, after preliminary carried out laboratory works with concrete in-situ material, to achieve significant economical affect in road and other construction by using Renolit-technology and thus reducing the material consumption (for construction layers) and rising working time of the objects.

3.2. The special group of samples was prepared for the permeability tests. The aim was to determine a potential possibility of Renolit-technology in reducing of coefficient permeability of in-situ sandy materials and close to those in composition up to level $< 5*10^{-7}$ cm/s. This is the requirement of many waterproof and environment protection objects construction. It is very important to note, that the result should be achieved at the mixture densities sufficient low for realization in field conditions.


Table 7 illustrates results of our laboratory work for SC and SC-Renolit materials. It can be seen, on the samples of series no.1-2, that with Renolit addition coefficient permeability of the sand and sands mix reduces almost to require level. As result of manipulation with a ration: lean clay / fly ash and cement / Renolit concentration of material category E, we succeeded in reducing permeability coefficient up to $1*10^{-7} - 5*10^{-8}$ cm/s. It can be seen from graph 5, that, obtained on lean clay (at its dry density >1900 kg/m3) permeability coefficient 3-4*10⁻⁷ cm/s, the same result achieves at dry density SC-Renolit material <1750 kg/m3.

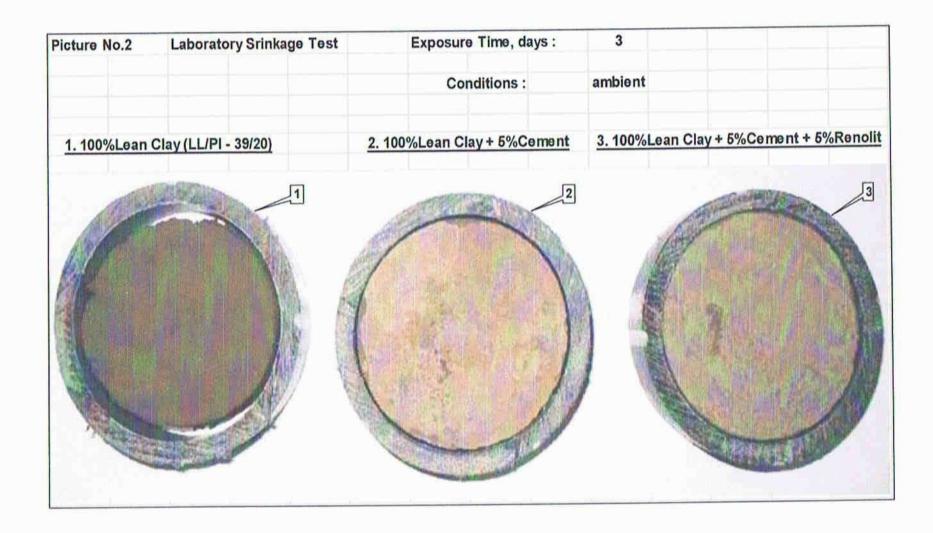
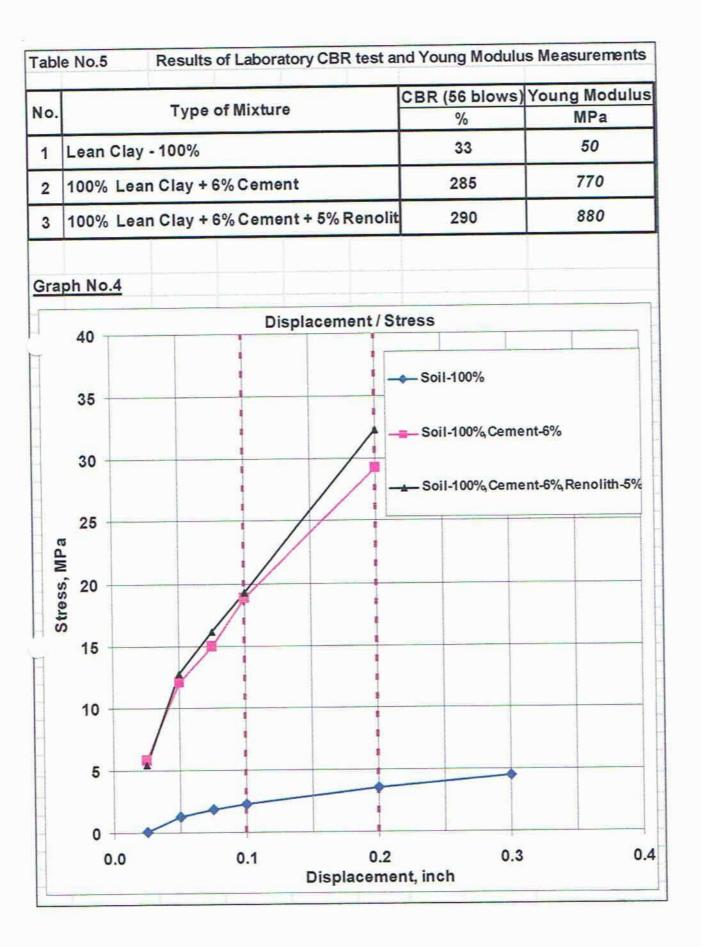
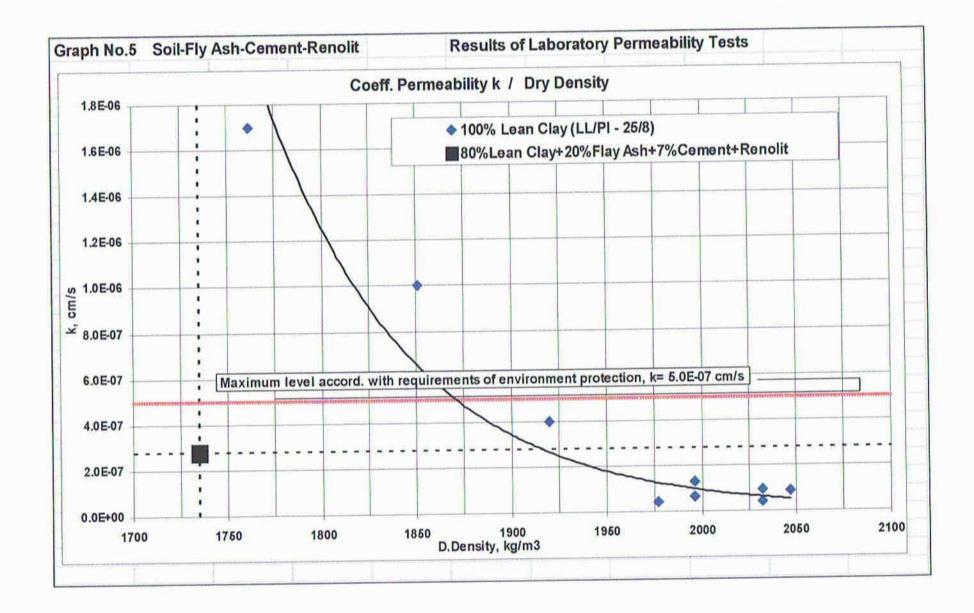

Conclusion from data of 3.2 – Now we are sure, that the Renolit-technology can be successful in the object constructions noted above.

Table No.1	Soil / Soil-Cement (SC).		Results o	f Laboratory	Tests -	Unconfined	Compressive Stre	ength
No.	Type of Soil and ASTM	Cement	Water	Dry Den-ty kg/m3	LL/PI %	Exposure Time	Conditions of	Compressive Strength
110.	Classification	w.%	w.%			days	curing period	MPa
1.1		0	41	1296	84/54		-	0.17
1.2	Fat Olay Ol	0	41	1310	90/56	-	-	0.21
1.3	Fat Clay, CH	0	26	1563	61/37	-		0.31
1.4		0	24	1617	50/30	-		0.36
						-	-	
2.1		0	17	1790	39/20	-	-	0.5
2.2	Lean Clay, CL	0	17	1808	44/25			0.6
2.3		0	12.5	1985	33/12	7	Ambient	2.4
3	Quarry Sand (75w.%) + Lean Clay (25w.%), GP-GW	0	6.5	2220	31/15	14	Ambient	0.7
4.1	Lean Clay, CL	5.0	20	1688	39/20	14	Ambient	3.2
5.1		5.0	19	1649	35/10	- 16	100% Humidity	1.0
5.2	Quarry Waste, GP	6.0	20	1621	35/10	10	100 % Humanty	1.4
6.1	Crushed Stone (60w.%) +	2.0	9	2135				0.7
6.2		2.5	8.7	2130	NP	7	100% Humidity	1.1
6.3		3.0	8.6	2145	NP	,	literinary	1.5
6.4	Quarry Sand (40w.%)	3.5	8.2	2150				2.1


Table N	lo.2 SC / SC-Renolit		Results of	of Labor	atory Tests	- Uncon	fined Compre	essive Strengt	h
No.	Type of Soil	Cement	Renolit	Water	Dry Den-ty kg/m3	LL/PI	Exposure Time	Conditions of curing	Compressive Strength
		w.%	w.% by Cement	w.%		%	days	period	MPa
1.1	Output Court	3.0 5		15.0	1948	ND	10	Ambient	1.1
1.2	Quarry Sand	5.0	5	16.0	1957	NP	10	Ambient	1.6
2.1	Quarry Sand (20.3w.%)		0		1807	NP	44	Ambient (Including Permeability Tests after	1.2
2.2			3	16.2	1790				1.2
2.3		5.4	5		1816				1.5
2.4	+ Sand (74.3w.%)		7		1833			14,28,44 days)	1.5
3.1		0	0	12.5	1985	33/12	7		2.4
3.2	-	5	0	20.0	1688	39/20	14	Ambient	3.2
3.3	-	6	0	13.5	1910	33/12	Ampient		5.6
3.4	Lean Clay	6	5	13.5	1920	33/12	7		5.4
3.5		7	5	24.5	1567	25/7	28 + 3	Ambient + 3 days inside water bath	1.2
4.1	Quarry Sand (20w.%) +	5	0	18	1836	04445		Amplant	4.1
4.2	Lean Clay (80w.%)	5	5	18	1808	31/15	14	Ambient	3.0

able N	lo.3 Soil-Fl	y Ash-Cemer	nt-Renoli	t	Result	Results of Laboratory Tests - Unconfined Compressive Strength							
No.	Lean Clay	Quarry Sand	Fly Ash	Cement	Renolit	Water	Dry Den-ty	*LL/PI	Exposure Time	Conditions of curing	Compressive Strength		
		w.% by S	oil		w.%by Cement	w.%	kg/m3	%	days	period	MPa		
1.1	100			7	5	24.5	1528			Ambient + 3 days inside water bath	1.2		
1.2	80	•:	20	5	5	23	1587		28 + 3		2.0		
1.3	80		20	7	5	25	1542	25/7			3.3		
1.4	75		25	5	5	22	1561				2.5		
1.5	75	•	25	7	5	22	1579				3.1		
2.1	80		20	7	5	18	1735				3.8		
3.1	80		20	5	2.	23	1605	00/00	44	Ambient	2.3		
3.1	80		20	5	5	23	1643	39/20	14		2.9		
4.1	80	20		5	5	18	1808			Ambient	3.0		
4.2	80	15	5	5	5	21	1718	39/20	14		2.9		
4.3	80	10	10	5	•	22	1687	00/20			2.3		
4.4	80	10	10	5	5	22	1698				2.2		



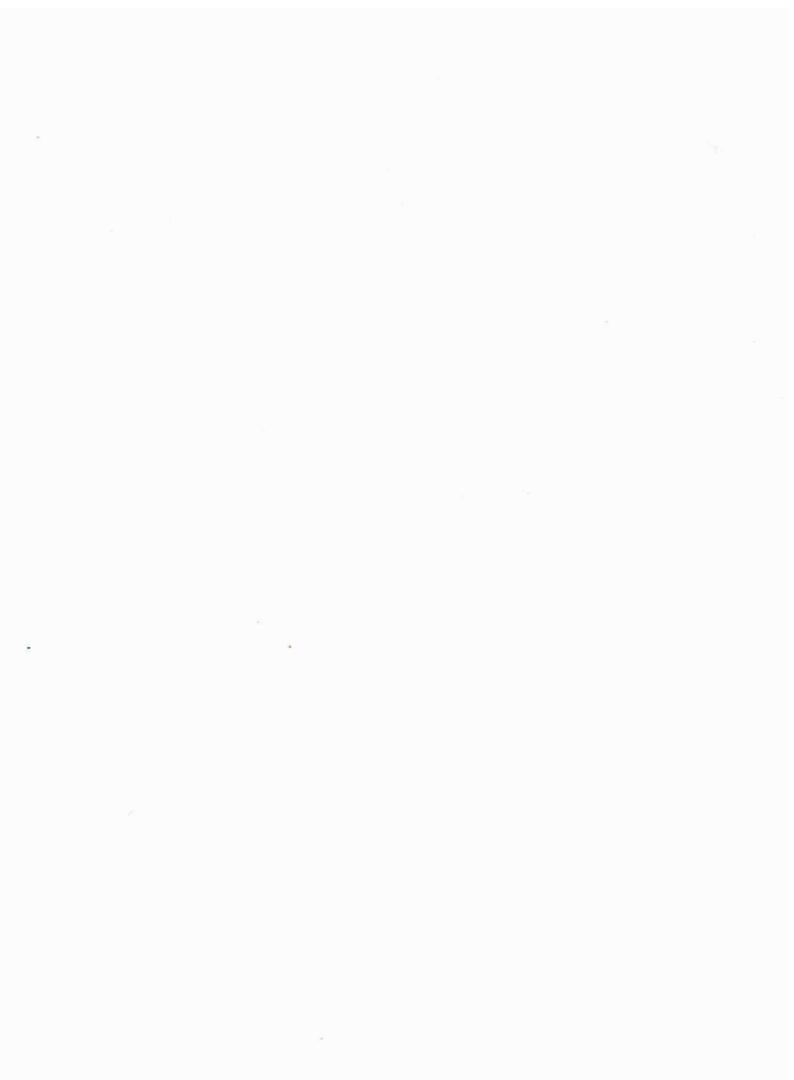

able No.6		Res	ults of Labo	oratory Slake	Durability 1	Tests	
			Initia	I Data			
	Lean Clay	Fly Ash	Cement	*Renolit	Water	Dry Den-ty	LL/PI
Spec.No		w.%		w.%by Cement	W.%	kg/m3	%
1.1	100	•	7	5	24.5	1528	
1.2	75 25 7		5	5	22	1561	
1.3	75	25	7	5	22		25/7
1.4	80	20	5	5	23		
1.5	80	20	7	5	25	Dry Den-ty kg/m3 1528 1561 1579 1587 1542 1735	
2.1	80	20	7	5	18	1735	25/8
xposure Tim			28 + 3				1000
conditions of	Curing Perio	od :	Ambient + 3	days Inside Wa	ter Bath		-
Spec.No	After 1-	st cycle	Afte	r 2 cycle	Resistance		
1.1	-	st cycle	Atte	- cycle	Very Low		
1.2		1.8		60.4	Low		
1.3	89	9.9		83.3			
1.4	88	3.7		66.3	Average		
1.5		5.0		72.1	Ave		-
2.1	94	1.2		83.8			
'Gamble's Cla	ssification Sc	ale of Rock	Resistance Ba	sed on Slake Dura	ability Tests Re	sults : 1	
	resistance		Value	s of I _d [%]			
Class of rock			1-st cycle	After 2-r	nd cycle		
	Extremely high		>99		-98		
Extreme	1. The second		00-80				
Extreme	gh		98 - 99 95 - 98		-95		
Extreme Hi Relative	gh		98 - 99 95 - 98 85 - 95	85			
Extreme Hij Relative Aver	gh Iy high		95-98	85 · 60 ·	-95		

Table N	lo.7 SC / SC-Renolit			F	Results of L	aborator	y Permeabili	ty Tests	
No.	Type of Soil	Cement	Renolit	Water	Dry Den-ty	*LL/PI	Exposure Time	Conditions of Curing	Permeability,
		w.%	w.% by Cement	w.%	kg/m3	%	days	Period	cm/s
1.1		3	5	15.0	1948	NP	10	Ambient	3.2E-06
1.2	Quarry Sand	5	5	16.0	1957	NP	10	Ambient	6.5E-07
2.1	Quarry Sand		0		1807			Ambient (Including	1.9E-06
2.2	- (20.3w.%) + Sand	N 25	3		1790	NP	44	Permeability Tests	1.0E-06
2.3		5.4	5	16.2	1816				7.7E-07
2.4	(74.3w.%)		7		1833			after 14,28 days)	8.2E-07
3.1	Quarry Sand	5	0	18.0	1836	04/45		Ambient	5.0E-06
3.2	(20w.%) + Lean Clay	5	5	18.0	1808	31/15	14	Ampient	1.5E-06
4.1		0	0	12.5	1910	1			4.7E-08
4.2	-	6	0	13.5	1892	33/12	4	100% moisture	5.5E-06
4.3	(74.3w.%) Quarry Sand	6	5	13.5	1902				3.4E-06
4.4		7	5	24.5	1567	25/7	28 + 3	Ambient + 3 days inside water bath	4.5E-06

ble N	o.8 Soil-Fl	y Ash-Cemer	nt-Renoli	t	Results of Laboratory Permeability Tests								
No.	Lean Clay	Quarry Sand	Fly Ash	Cement	Renolit	Water	Dry Den-ty	*LL/PI	Exposure Time	Conditions of Curing	Permeability,k		
NO.		w.%	iernu enunee		w.% by Cement	w.%	kg/m3	%	days	Period	cm/s		
1.1	100	-	-	7	5	24.5	1528			s	4.5E-06		
1.2	80	-	20	5	5	23	1587			days h	3.6E-08		
1.3	80	-	20	7	5	25	1542	25/7	28 + 3	3 bat	1.2E-07		
1.4	75		25	5	5	22	1561	-			5.2E-08		
1.5	75		25	7	5	22	1579		nt + water	6.1E-07			
1.0										ente			
2.1	100		-	-	-	10	1762	0510	•	Ambient inside wa	1.7E-06		
2.2	80	(F	20	7	5	18	1735	25/8	5/8 28 + 3	Arins	2.8E-07		
2.2	00	1											
3.1	80		20	5	-	23	1605	20/20	14	Ambient	1.4E-06		
3.1	80	-	20	5	5	23	1643	39/20	14	14 Ambient			
3.1	00		20										
4.4	80	20	-	5	5	18	1808				5.0E-06		
4.1	80	15	5	5	-	21	1716	39/20			4.9E-06		
4.2	80	15	5	5	5	21	1718		14	Ambient	1.6E-07		
4.3		10	10	5	-	22	1687				2.7E-06		
4.4	80 80	10	10	5	5	22	1698	1			1.2E-07		

-

